Skip to content

IoT - Coating Consistency is Key

Mallory McGuinness-Hickey September 25, 2020

 

IoT sensors aggregate and send data to IoT dashboards, simplifying critical, complex decisions quickly. One key area where this is particularly true is the utilization of sensor data for predictive maintenance, a process that reduces downtime and lowers the total cost of ownership. Myriad other applications incorporate these “smart” sensors too.

Today, IoT sensors are ubiquitous, touching almost every aspect of life. Gas pressure sensors monitor pressure changes in oil, energy, and utility applications. Photoelectric devices (photo sensors) are now common in the consumer electronics vertical. Sensors are responsible for temperature monitoring, a typical use case for warehouse and inventory management, and HVAC systems monitoring.

Accelerometers detect subnormal industrial machine applications, while ultrasonic flow meters are coupled with IoT modules to send data about smart metering to a remote location. Moisture sensors have been critical in recent advances in smart farming, allowing for constant soil health monitoring. In the automotive sector, tunneling magnetoresistive sensors (TMR) are an increasingly popular way to measure mechanical displacement. And Particulate Matter sensors detect pollution in the industrial landscape and smart cities.

 

The chemical vapor deposition (CVD) process used to deposit Parylene conformal coatings can efficiently accommodate these complex surfaces. Parylene’s usefulness is primarily founded upon its ability to cover PCBA configurations with exposed internal surfaces, sharp edges, flat surfaces, points, and crevices with consistent coverage free of voids.

 

HZO PRO750 Parylene Coating Equipment

HZO PRO750 Parylene Coating Equipment

 

The Parylene Deposition Process – Consistent Coverage

Rather than dipping, spraying, or brushing pre-formulated layers onto PCBAs and other components, Parylene’s application method synthesizes the protective film in-process. This deposition system comprises a series of vacuum chambers that produce Parylene vapor, pyrolyze the vapor, then deposit the vapor as a polymer sequentially.

During the CVD process, gaseous Parylene penetrates the layers of a PCBA. Its vaporous consistency surrounds all areas as it builds coating protection along the exterior. The coating layers are substantially thinner than those provided by liquid conformal coating materials, enhancing reliability and functional versatility.

It has repeatedly been demonstrated that CVD is valuable for thin-film deposition on irregular PCBAs. CVD's Conformal layers are exceptionally uniform, even in the nanometer range. Because these coating layers are exceptionally thin, non-uniformity is minimal.

 

Reach out to an Expert 

Choosing Parylene conformal coating services isn’t a failsafe decision, like anything else. Problems can occur with the process and the material. This is particularly true if the wrong Parylene type is used for a coating project while another type could provide better coverage. If you need a consultation to determine if Parylene is the right choice for your project, contact the HZO engineering team today, fill out a quote form, or leave a brief message.

 
 

Additional Resources

Download the HZO Parylene Datasheet
Datasheet

Download the HZO Parylene Datasheet

Learn About Corrosion Resistance From An Industry-Leading Engineer
Webinar

Learn About Corrosion Resistance From An Industry-Leading Engineer

Learn About HZO Coatings With Our Resource Page
Resource

Learn About HZO Coatings With Our Resource Page

Learn About the Parylene Process With Our Resource Page
Resource

Learn About the Parylene Process With Our Resource Page

Learn About Parylene Properties With Our Resource Page
Resource

Learn About Parylene Properties With Our Resource Page

Understand Parylene's Benefits for Optical Applications
Blog

Understand Parylene's Benefits for Optical Applications

Parylene Thickness - How Much is Enough?
Blog

Parylene Thickness - How Much is Enough?

Understand Parylene Masking
Blog

Understand Parylene Masking

Learn How to Remove Parylene Coating
Blog

Learn How to Remove Parylene Coating

Download a Parylene C Datasheet and Learn About the Coating
Blog

Download a Parylene C Datasheet and Learn About the Coating

Understand More About Parylene's Superior Chemical Resistance
Blog

Understand More About Parylene's Superior Chemical Resistance

Learn About the Benefits of Parylene's Biocompatibility
Blog

Learn About the Benefits of Parylene's Biocompatibility

Download a Parylene N Datasheet and Learn About the Coating
Blog

Download a Parylene N Datasheet and Learn About the Coating

Is Parylene Right For Your Project?
Blog

Is Parylene Right For Your Project?

How HZO Makes Parylene Scalable
Blog

How HZO Makes Parylene Scalable

Learn About Parylene
Blog

Learn About Parylene

How Does Parylene Perform in Extreme Temperatures?
Blog

How Does Parylene Perform in Extreme Temperatures?

Why is Parylene Coating Conformal?
Blog

Why is Parylene Coating Conformal?

The Illustrated Guide to CVD
Infographic

The Illustrated Guide to CVD

Learn How To Incorporate Conformal Coating Into Your Manufacturing Process
Webinar

Learn How To Incorporate Conformal Coating Into Your Manufacturing Process

Parylene Coating for Reliable Product Design Webinar
Webinar

Parylene Coating for Reliable Product Design Webinar

Download the HZO Parylene SDS
Datasheet

Download the HZO Parylene SDS

Learn How to Bring Parylene Deposition In-House
Technical Paper

Learn How to Bring Parylene Deposition In-House