Skip to content

Young's Modulus of Polymers - Measurement, Calculation

Mallory McGuinness-Hickey September 19, 2023
Diagram of Young's Modulus

Young's Modulus is an important property, allowing engineers to select coating materials based on their desired stiffness. Understanding and manipulating the elastic Modulus of polymers is crucial for applications where strength, flexibility, or a combination of both is required.

What is Young's Modulus of Polymers?

Young's Modulus, also known as the elastic Modulus, is a fundamental property that characterizes the mechanical behavior of a material. It quantifies the relationship between stress (force per unit area) and strain (deformation) when a material is subjected to an external force or load.

For polymers, Young's Modulus determines how much the material will stretch or compress in response to applied stress. It measures the rigidity of the polymer chain structure. When comparing Young's Modulus between polymers and other materials such as metals and ceramics, polymers typically have lower values. This is because polymers have a more flexible molecular structure, allowing them to undergo more significant elastic deformation under applied stress, in contrast to metals and ceramics with more rigid atomic structures.

Factors Influencing Young's Modulus 

Understanding the factors influencing Young's Modulus allows engineers to choose polymer materials with desired mechanical properties for specific applications. The following factors influence Young's Modulus of Polymers:

  • Molecular structure and chain flexibility: The arrangement and size of polymer chains determine their flexibility and, consequently, their Young's Modulus. Polymers with longer and more linear chains tend to have higher Young's Modulus values.
  • Degree of cross-linking and polymerization: Cross-linking refers to forming chemical bonds between polymer chains, increasing their rigidity and thus increasing Young's Modulus. Higher degrees of cross-linking result in higher Young's Modulus values.
  • Temperature and environmental conditions: Young's Modulus of polymers can vary with temperature and environmental conditions. The presence of moisture, for example, can affect the intermolecular forces within the polymer, leading to changes in Young's Modulus.

Measurement and Calculation of Young's Modulus

Measuring and calculating Young's Modulus is crucial to understanding the mechanical behavior of polymers. This value provides valuable insight into how a polymer will respond to applied stress and strain, making it essential in product design.

There are various experimental techniques used to measure Young's Modulus in polymers. These include:

  • Tensile testing and stress-strain curves: This technique involves subjecting a polymer sample to tension until it reaches its breaking point. The resulting stress-strain curve provides essential data for determining Young's Modulus.
  • Extensional methods: Uniaxial and biaxial extension tests measure Young's Modulus in specific directions. These methods help evaluate the anisotropic nature of polymers.
  • Other characterization techniques: Techniques such as nanoindentation and dynamic mechanical analysis can also be employed to measure Young's Modulus in polymers.

Calculation methods for Young's Modulus

Hooke's Law and stress-strain behavior interpretation play vital roles when calculating Young's Modulus:

  • Hooke's Law and its application to polymers: Hooke's Law states that the stress applied to a material is directly proportional to the strain it produces. This linear relationship allows for the calculation of Young's Modulus.
  • Interpretation of stress-strain behavior and determination of Modulus: By analyzing the stress-strain curve obtained from experimental data, the Modulus can be determined using mathematical methods tailored for polymers.

Role in Material Selection and Design

Young's Modulus helps engineers determine the stiffness and elasticity of polymers. Knowing Young's Modulus values allows them to select the appropriate material for a specific application. The higher the Young's Modulus, the stiffer the material will be, resulting in better resistance to deformation. This stiffness is crucial in applications where the polymer needs to withstand heavy loads or maintain its shape for a long time.

Some examples of how design engineers use Young's Modulus to select materials in different industries are listed below.

  • Automotive and aerospace applications: Young's Modulus is essential in designing components such as automotive body parts, airplane wings, and fuselages. It helps engineers ensure the materials can withstand the required forces and maintain their shape during operation.
  • Medical and healthcare applications: Young's Modulus is a consideration when developing medical devices, prosthetics, and implants. The Modulus ensures that the materials provide the necessary support, flexibility, and performance for patient safety and comfort.
  • Consumer goods and packaging: Young's Modulus comes into play in designing everyday products such as bottles, containers, and packaging materials. It helps determine the polymers' rigidity, flexibility, and impact resistance, ensuring they meet the specific requirements of the intended applications.
  • Industrial applications: Engineers can use the measure of stiffness or rigidity of a material to predict how polymers will behave under various conditions common in harsh industrial environments.

Relationship Between Young's Modulus and Product Performance and Durability

Because Young's Modulus directly affects a polymer's behavior under different loads and stresses, engineers can make informed decisions about material selection, design structures that can withstand specific loads, and ensure the safety and reliability of polymer-based products.

The knowledge of Young's Modulus allows for optimizing material properties, such as flexibility and strength, to meet the unique requirements of various industries. Whether in the automotive, aerospace, or medical field, an understanding of Young's Modulus enables the development of innovative solutions that are tailor-made for specific applications.

If you are an engineer involved in product design and would like guidance in selecting a suitable coating material for your application, please contact our team today. Alternatively, if you want to learn more about thin film properties, including elongation yield, elongation at break, or tensile strength at yield, browse our site. 

Additional Resources

The Difference Between
Video

The Difference Between "Hydrophilic and Hydrophobic" Coating Properties

Ensure Your Products Meet Market Claims With Our IP Ratings Checklist
Checklist

Ensure Your Products Meet Market Claims With Our IP Ratings Checklist

Learn About Corrosion Resistance From An Industry-Leading Engineer
Webinar

Learn About Corrosion Resistance From An Industry-Leading Engineer

Understand the Capabilities of Thin Film Coatings With Our Resource Page
Resource

Understand the Capabilities of Thin Film Coatings With Our Resource Page

Understand UL94 Rating - Testing, How to Choose a Material, and More
Blog

Understand UL94 Rating - Testing, How to Choose a Material, and More

Learn About HZO Parylene With Our Resource Page
Resource

Learn About HZO Parylene With Our Resource Page

What's the Difference Between Hydrophobic Coatings and Hydrophilic Coatings?
Blog

What's the Difference Between Hydrophobic Coatings and Hydrophilic Coatings?

Download HZO's Nanocoating Datasheet
Datasheet

Download HZO's Nanocoating Datasheet

Learn About the Costs of Corrosion
Infographic

Learn About the Costs of Corrosion

Understand How to Avoid Premature Product Failure
Webinar

Understand How to Avoid Premature Product Failure

Learn About Waterproof and Corrosion Resistant Coatings
Webinar

Learn About Waterproof and Corrosion Resistant Coatings

Why You Need HZO Protection For Your Electronics
Video

Why You Need HZO Protection For Your Electronics

HZO Coating Demo Video
Video

HZO Coating Demo Video

How To Design a Waterproof Product With IP Ratings
Blog

How To Design a Waterproof Product With IP Ratings

How To Prevent Devices From Overheating
Blog

How To Prevent Devices From Overheating

NEMA Enclosure Ratings vs IP Standards
Blog

NEMA Enclosure Ratings vs IP Standards

Arc Resistance - Concepts And Testing Explained
Blog

Arc Resistance - Concepts And Testing Explained

Dielectric Strength - Formula, Testing, Table of Values
Blog

Dielectric Strength - Formula, Testing, Table of Values

Dielectric Constant of Insulator - Materials, Formula, Table of Values
Blog

Dielectric Constant of Insulator - Materials, Formula, Table of Values

Military Standards for Safeguarding PCBAs
Blog

Military Standards for Safeguarding PCBAs

Tensile Strength at Yield - Testing, Definition, Material Selection
Blog

Tensile Strength at Yield - Testing, Definition, Material Selection

Elongation At Break - Definition, Testing, Material Selection
Blog

Elongation At Break - Definition, Testing, Material Selection

Elongation Yield Overview - Unit of Measurement, Data, Testing
Blog

Elongation Yield Overview - Unit of Measurement, Data, Testing

Young's Modulus of Polymers - Measurement, Calculation, Material Selection
Blog

Young's Modulus of Polymers - Measurement, Calculation, Material Selection

Dissipation Factor - Definition, Measurement, Variables
Blog

Dissipation Factor - Definition, Measurement, Variables

Volume Resistivity - Definition, Measurement, Implications For Product Design
Blog

Volume Resistivity - Definition, Measurement, Implications For Product Design

Biocompatible Coating Material
Blog

Biocompatible Coating Material

Transparent Polymers - Applications, Material Selection
Blog

Transparent Polymers - Applications, Material Selection

WVTR - Coating Standards, Testing, Material Selection
Blog

WVTR - Coating Standards, Testing, Material Selection

What is the Index of Refraction? Measurement, Definition & More
Blog

What is the Index of Refraction? Measurement, Definition & More

What is Thermal Conductivity? Explanation, Measurement, Uses
Blog

What is Thermal Conductivity? Explanation, Measurement, Uses

Polymer Glass Transition Temperature – Material Properties, Impact
Blog

Polymer Glass Transition Temperature – Material Properties, Impact

What is Coefficient of Linear Expansion? Formula, Units & More
Blog

What is Coefficient of Linear Expansion? Formula, Units & More

Prevent Electronic Failure Webinar
Webinar

Prevent Electronic Failure Webinar

Safeguarding with Nanocoatings Webinar
Webinar

Safeguarding with Nanocoatings Webinar