Skip to content

Tensile Strength at Yield - Testing, Standards, Specs, Material

Mallory McGuinness-Hickey September 19, 2023
testing for tensile strength at yield

The ability to accurately predict the behavior of coating materials under tension is crucial in ensuring the integrity and reliability of electronic components. This includes studying different materials' deformation and failure mechanisms when subjected to a tensile load. One key parameter that is used to quantify the ability of a material to withstand such loads is its tensile strength at yield.

What is Tensile Strength at Yield?

Tensile Strength at Yield indicates a material's ability to withstand loads and forces during its lifetime, making it crucial for designing structures and components that can endure various stresses. It is a vital measurement in numerous disciplines, such as engineering, manufacturing, aerospace, and automotive.

When a material is subjected to a tensile load, it experiences stress and undergoes deformation. The stress-strain curve, representing the relationship between the applied stress and resulting strain, provides valuable insights into the material's behavior. This curve can determine the ultimate tensile strength, the maximum stress the material can withstand before failure occurs.

The yield point is a critical parameter in studying tensile strength at yield. It refers to the point on the stress-strain curve where a significant increase in strain occurs with minimal or no increase in stress. The tensile strength at yield is the stress level at this point and represents the maximum stress a material can withstand without undergoing permanent deformation.

During the deformation process, materials can exhibit different types of behavior. Elastic deformation occurs when a material returns to its original shape upon removal of the load, while plastic deformation occurs when the material undergoes permanent changes in shape. Understanding the concepts of elastic and plastic deformation is essential in analyzing a material's behavior under tension.

Testing Methods, Equipment, and Standards Used for Measurement 

Due to the importance of this mechanical material property, obtaining accurate Tensile Strength at Yield data is critical. Accurately measuring it requires appropriate testing methods, equipment, and adherence to specific standards. The most commonly used technique is the tensile test, where a sample material is subjected to an increasing axial load until it reaches its yield point. Sophisticated equipment, such as universal testing machines, performs these tests and obtains reliable measurements. Standard organizations, such as ASTM International, provide guidelines and standards for conducting these tests, ensuring consistency and comparability of results.

Standards and Specifications 

Standards and specifications are crucial in ensuring the accuracy, reliability, and consistency of measurements. National and international organizations have established various standards to regulate this critical characteristic of materials.

Similarly, numerous national and international standards have been developed to guide the measurement and characterization of tensile strength at yield. These standards outline the specific testing methods, equipment, and conditions to ensure accurate and comparable results across different laboratories and industries.

The American Society for Testing and Materials (ASTM), International Organization for Standardization (ISO), and Deutsches Institut für Normung (DIN) are among the leading organizations that have established widely recognized standards for tensile strength at yield. Compliance with these standards is essential in ensuring test data's uniformity, reliability, and compatibility.

What Influences Tensile Strength at Yield?

Material composition plays a crucial role in determining values. Different elements and their proportions can significantly affect the mechanical properties of a material, including its yield strength. For example, increasing the amount of carbon in certain materials can enhance tensile strength at yield.

The microstructure of a material also plays a vital role in determining this value. Factors such as grain size, phase distribution, and dislocation density can impact the material's ability to withstand deformation before yielding.

Coating Material Selection and Design Factors

Because this mechanical property is crucial in determining various structures and products' overall reliability and safety, it should be closely considered during material selection. Every industry and application has unique requirements for choosing a coating material. Engineers must account for environmental conditions, load-bearing capacity, and durability requirements. They can select appropriate materials to meet the desired performance and safety standards by evaluating the tensile strength at yield requirements specific to each industry. A summary of requirements for particular applications is below.

Evaluating Tensile Strength at Yield requirements for different industries

  • Aerospace: In the aerospace industry, where extreme conditions and rigorous performance requirements exist, coating materials with exceptional tensile strength at yield are crucial. This property ensures aircraft components' structural integrity and safety, such as wings and fuselage, under immense stress during flight.
  • Automotive: This property is vital in automotive engineering as it affects vehicle structural stability. Manufacturers and designers prioritize coating materials with optimal values to enhance passenger safety and overall vehicle performance.
  • Consumer products: From household appliances to sports equipment, consumer products are designed to withstand daily usage and potential impacts. Tensile strength at yield is vital in ensuring that these products can withstand the forces they are subjected to without deforming or failing.

Importance in Coating Material Selection

Tensile strength at yield is a critical mechanical property used in coating material selection. It provides valuable information about the protective coating material's ability to withstand applied forces without permanent deformation. If a protective coating were to break, it could allow corrosives and contaminants to destroy electronic components, causing failure.

Design engineers rely on this property to evaluate and compare different coating materials, ensuring their suitability for specific applications. If you are designing an electronic component and need help determining which coating material is best for your product, please contact our engineers, or read additional information on thin film coating properties.

Additional Resources

The Difference Between
Video

The Difference Between "Hydrophilic and Hydrophobic" Coating Properties

Ensure Your Products Meet Market Claims With Our IP Ratings Checklist
Checklist

Ensure Your Products Meet Market Claims With Our IP Ratings Checklist

Learn About Corrosion Resistance From An Industry-Leading Engineer
Webinar

Learn About Corrosion Resistance From An Industry-Leading Engineer

Understand the Capabilities of Thin Film Coatings With Our Resource Page
Resource

Understand the Capabilities of Thin Film Coatings With Our Resource Page

Understand UL94 Rating - Testing, How to Choose a Material, and More
Blog

Understand UL94 Rating - Testing, How to Choose a Material, and More

Learn About HZO Parylene With Our Resource Page
Resource

Learn About HZO Parylene With Our Resource Page

Learn about Protective Coating Methodologies With Our White Paper
Technical Paper

Learn about Protective Coating Methodologies With Our White Paper

Download HZO's Nanocoating Datasheet
Datasheet

Download HZO's Nanocoating Datasheet

Learn About the Costs of Corrosion
Infographic

Learn About the Costs of Corrosion

Understand How to Avoid Premature Product Failure
Webinar

Understand How to Avoid Premature Product Failure

Learn About Waterproof and Corrosion Resistant Coatings
Webinar

Learn About Waterproof and Corrosion Resistant Coatings

What's the Difference Between Hydrophobic Coatings and Hydrophilic Coatings?
Blog

What's the Difference Between Hydrophobic Coatings and Hydrophilic Coatings?

Why You Need HZO Protection For Your Electronics
Video

Why You Need HZO Protection For Your Electronics

HZO Coating Demo Video
Video

HZO Coating Demo Video

How To Design a Waterproof Product With IP Ratings
Blog

How To Design a Waterproof Product With IP Ratings

NEMA Enclosure Ratings vs IP Standards
Blog

NEMA Enclosure Ratings vs IP Standards

Arc Resistance - Concepts And Testing Explained
Blog

Arc Resistance - Concepts And Testing Explained

Dielectric Strength - Formula, Testing, Table of Values
Blog

Dielectric Strength - Formula, Testing, Table of Values

Dielectric Constant of Insulator - Materials, Formula, Table of Values
Blog

Dielectric Constant of Insulator - Materials, Formula, Table of Values

Military Standards for Safeguarding PCBAs
Blog

Military Standards for Safeguarding PCBAs

Tensile Strength at Yield - Testing, Definition, Material Selection
Blog

Tensile Strength at Yield - Testing, Definition, Material Selection

Elongation At Break - Definition, Testing, Material Selection
Blog

Elongation At Break - Definition, Testing, Material Selection

Elongation Yield Overview - Unit of Measurement, Data, Testing
Blog

Elongation Yield Overview - Unit of Measurement, Data, Testing

Young's Modulus of Polymers - Measurement, Calculation, Material Selection
Blog

Young's Modulus of Polymers - Measurement, Calculation, Material Selection

Dissipation Factor - Definition, Measurement, Variables
Blog

Dissipation Factor - Definition, Measurement, Variables

Volume Resistivity - Definition, Measurement, Implications For Product Design
Blog

Volume Resistivity - Definition, Measurement, Implications For Product Design

Biocompatible Coating Material
Blog

Biocompatible Coating Material

Transparent Polymers - Applications, Material Selection
Blog

Transparent Polymers - Applications, Material Selection

WVTR - Coating Standards, Testing, Material Selection
Blog

WVTR - Coating Standards, Testing, Material Selection

What is the Index of Refraction? Measurement, Definition & More
Blog

What is the Index of Refraction? Measurement, Definition & More

What is Thermal Conductivity? Explanation, Measurement, Uses
Blog

What is Thermal Conductivity? Explanation, Measurement, Uses

Polymer Glass Transition Temperature – Material Properties, Impact
Blog

Polymer Glass Transition Temperature – Material Properties, Impact

What is Coefficient of Linear Expansion? Formula, Units & More
Blog

What is Coefficient of Linear Expansion? Formula, Units & More

Prevent Electronic Failure Webinar
Webinar

Prevent Electronic Failure Webinar

Safeguarding with Nanocoatings Webinar
Webinar

Safeguarding with Nanocoatings Webinar